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A B S T R A C T   

Since superhydrophobic surfaces show extremely low friction with water, they have been tried for drag-reduction 
purpose for ships or pipe systems for liquid transportation in recent years. However, the superhydrophobic 
surfaces combining comprehensive performance, feasible fabrication method as well as low manufacturing cost 
are still big issues, limiting their real applications. Inspired by the fine hairs and cilia of creature, we prepare 
hairy surfaces by electrostatic flocking and subsequent surface modification. The optimal hairy surfaces exhibit 
excellent superhydrophobicity, satisfactory abrasion resistance that is superior to the superhydrophobic surfaces 
ever reported, long-term underwater stability with/without additional air pressure and good drag-reduction 
efficiency at low shearing rates. The correlations between microstructure of samples and key properties are 
analyzed. This work may shed new light on design and preparation of mechanical robust, underwater stable and 
drag-reduction surfaces that can be easily manufactured in large scale.   

1. Introduction 

More than 90 % of the country’s trade is realized by shipping, which 
consumes hundreds of million tons of fossil fuel in one year [1]. 
Developing of drag-reduction surface is very necessary for ships to 
reduce the fuel consumption. In recent decades various drag-reduction 
surfaces have been developed, such as riblet [2–6], flexible wall [7], 
air bubble [8–10], superhydrophobic surface (SHS) [11–18]. Among 
them, the SHS, owing to its superior drag-reduction level at lower rate of 
water flow, has attracted significant interest for researchers. The drag- 
reduction mechanism of SHS originates from its unique nano- and 
micro-structures containing a large amount of air, which can reduce 
liquid-solid contact area and thus decreasing friction between water and 
the surface effectively [16,19,20]. However, the fine microstructures of 
SHS are fragile and easily damaged when subjected to water repeated 
washing; in addition, maintaining the long-term stability of air layer 
under water is also big challenge [21,22]. 

In nature after a long time of evolution some creatures have devel-
oped superhydrophobic surfaces featuring superior mechanical 

robustness and long-term stability under water. The excellent perfor-
mance of these surfaces is probably due to the hairy building blocks with 
high aspect ratio. For example, with superhydrophobic fluffy legs, the 
water walking arthropods can float and move quickly on water [23–27] 
(Fig. 1a-b). Salvinia develops elastic eggbeater-shaped hairs on its sur-
face, by which it has excellent long-term air-retention properties 
[28–30](Fig. 1c-d). Some waterfowls (e. g. ducks [31], penguins [32] 
…) grow superhydrophobic and drag-reduction feathers, also. Mimicing 
Salvinia surface, Xiang [33] et al. fabricated 3D-printed artificial hair- 
like structures, with which the continuous air mattress can recover 
completely after collapse due to various disturbances. Maryna [21] 
prepared the nanofur surface by hot pulling method and realized fairly 
stable gas layer and obvious drag-reduction effect using this surface. 

In this study, the hairy surfaces were fabricated by combining the 
electrostatic flocking and surface modification technique using low 
surface energy polydimethylsiloxane (PDMS) and hydrophobic silica 
nanoparticles. The samples had excellent superhydrophobic perfor-
mance, good abrasion resistance, and showed long-term stability of gas 
layer as well as superior drag-reduction effect when immersed under 
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water. This hairy surface may find possible applications in drag- 
reduction field. 

2. Experimental 

2.1. Materials 

Different nylon flocks with the nominal fiber length from 0.3 to 3 mm 
(Table 1) were provided by Alpha Flock Ltd., China. Its melting tem-
perature was 211 ◦C. Isopropanol, glycerol, petroleum ether with the 
boiling range 60–90 ◦C were purchased from Sinpharm Chemical Re-
agent Beijing Co., Ltd., China. Polydimethylsiloxane (PDMS, Sylgard 
184) was provided by Dow Corning, USA. Fumed nano-SiO2 R812s was 
supplied by Evonik Industries AG, Germany. Epoxy resin, E51, was 
purchased from China Petrochemical Corporation, China. The curing 
agent was the mixture of methyl hexahydrophthalic anhydride and N, N- 
dimethyl benzyl amine at a mass ratio of 100:1, which were supplied by 
Shanghai Macklin Biochemical Technology Co., Ltd. China. 

2.2. Fabrication of flocking samples 

The epoxy resin E51, curing agent and nano-SiO2 R812s (as thixo-
tropic agent) were mechanically stirred and degassed at a mass ratio of 
100:93:1.5 using Planetary Centrifugal Mixer (THINKY ARV-310LED, 
Thinky Corporation, Japan) for 4 min. The resulting mixture was used 
as the flocking adhesive in the following step. 

A self-made electrostatic flocking box was used for fabrication of the 
flocking samples. Fig. S1 illustrates the general principle of the flocking 

process. The high-voltage DC power (HVDC) having the maximum 
voltage up to 130 kV was supplied by Spellman High Voltage Electronics 
CO., LTD (SL300, USA). Two parallel steel plates (20 cm × 20 cm) with a 
spacing of 5 cm were used as the electrodes. The upper plate was 
grounded and the lower plate was connected with the HVDC positive 
pole. Before flocking, a certain amount of nylon flocks with various 
nominal fiber length was evenly scattered on the lower plate with a 
vibrating screen. An aluminum foil, which was coated with the uncured 
epoxy flocking adhesive by a 50 μm wire rod coater (OSP wire rod 
coater), was fixed facedown under the upper plate. During flocking, the 
voltage 26 kV was loaded between plates. The flocking fibers were found 
to nearly vertically insert into the adhesive on the upper plate in the 
flocking time of 10 s. The sample was subsequently cured in an oven at 
100 ◦C for 12 h. The floating flocks were blown off with a high-pressure 
air gun at 0.5 MPa. Six types of nylon flocks were used and their 
dimension parameter and the flocking density of the samples were 
shown in Table 1. 

The flocking samples were cleaned with isopropanol twice, dried and 
subsequently immersed in 1 wt% PDMS-petroleum ether solution 
(labelled as Flock@PDMS) or 1 wt% PDMS-1 wt% nano-SiO2 (R812s)- 
petroleum ether solution (Flock@PDMS-SiO2) for 1 min for surface 
modification. The wetted samples were hung upside down for drying, 
and then put into an oven of 60 ◦C for 12 h. After curing, the super-
hydrophobic flocking samples were obtained. 

2.3. Characterization 

2.3.1. Surface morphology and composition 
The surface morphologies of flocking samples were examined using a 

field emission scanning electron microscope (SEM SU8200, Hitachi, 
Japan) at an accelerating voltage of 5 kV. Before observation, the 
samples were sputtered with platinum layers for 30 s to enhance their 
electrical conductivity. The surface chemistry of samples was investi-
gated by a Fourier transform infrared spectrometer (FTIR S-One, Perkin 
Elmer, USA) with Omnic software. The element composition was tested 
by X-ray photoelectron spectroscopy (XPS 250Xi, Thermo Scientific 
Escalab, USA) using Al Kαx-rays (hν = 1486.6 eV). Survey spectra were 
recorded with a pass energy of 150 eV. All the binding energies were 
calibrated by the C1s peak at 284.8 eV of the surface adventitious 

(a) (b)

(d)(c)

1 mm 100 μm

Fig. 1. Hairy superhydrophobic surfaces in nature. (a) A photo of water walking arthropod (Mesovelia) [34] floating on water and (b) related schematic micro-
structure of its hairy leg. (c) superhydrophobic upper side of Salvinia leaf and (d) related SEM image showing eggbeater-shaped hairy microstructure [28]. 

Table 1 
Information of the nylon flocks and flocking density of samples.  

Nominal fiber 
length (mm) 

0.3 0.6 0.8 1.0 1.5 3.0 

Av. fiber length 
(μm) 

287 
± 48 

585 
± 22 

824 
± 25 

998 
± 76 

1485 
± 46 

2985 ±
107 

Av. fiber diameter 
(μm) 

12.6 12.6 12.6 12.6 24.9 36.2 

Flocking density 
(fiber/mm2) 

967 650 386 278 119 116  
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carbon. 

2.3.2. Surface wettability 
The wettability of samples was studied by contact angle measuring 

apparatus (DSA100, Kruss, Germany) at ambient temperature. Deion-
ized water droplet (4 μL) was carefully dropped onto sample surface and 
the contact angle was measured. The rolling angle was determined by 
inclining the sample surface to the angle, at which the water droplet (10 
μL) on the surface begun to roll. Each sample was tested 5 times at 
different positions to minimize experimental errors and the average 
value was reported. 

2.3.3. Mechanical robustness 
The mechanical robustness of flocking samples were evaluated by 

sandpaper abrasion test [35]. A piece of the flocking sample (25 mm ×
25 mm) was abraded with a sandpaper (grit No. 240) under an apparent 
pressure of ~1.6 kPa (using 100 g weight). One sliding cycle includes 

horizontal slide of 10 cm and normal slide of 10 cm. After every 10-cycle 
abrasion, the contact angle and rolling angle were measured. 

2.3.4. Hydrostatic pressure resistance 
The hydrostatic pressure resistance was tested in a sealed transparent 

pressure tank. The flocking sample was submerged underwater and 
adjusted to an appropriate angle, at which the silvery reflection zone can 
be recorded by a digital camera. The silvery reflection zone originated 
from the air layer trapped on sample. The area of silvery reflection zone 
reduced with increase in compressed air pressure applied to the sample 
[36,37] and can be calculated by image processing software (e.g. Image 
J in this work, see Fig. S2). 

2.3.5. Water impact resistance test 
The water impact resistance of flocking samples was investigated by 

water drop test. Individual water droplet (6.3 μL) released from a certain 
height impacted on the sample surface at different speeds. This process 

Flocking Modification
Modified with PDMS

Modified with PDMS-SiO
2 

500 μm 5 μm 5 μm 5 μm

(a)

(b)

(c)

(d)
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(f)

(g)

(h)

(i) (j)
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Fig. 2. Fabrication, morphology and surface chemistry of the flocking samples. Top: Schematic illustration showing fabrication of the superhydrophobic flocking 
samples. Middle: SEM images of the flocking samples (fiber length, 0.6 mm) at different magnifications. (a, b, c, d) Top and side views of the unmodified sample. (e, f) 
Top views of the sample modified by PDMS and (g, h) the sample by PDMS and nano-SiO2. Bottom: (i) FTIR and (j) XPS spectra of the flocking sample. 
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was recorded using a Phantom V7.1 colour high-speed camera (Vision 
Research AMETEK Inc., USA, 3000 frame/s) [38]. 

2.3.6. Drag-reduction test 
For a laminar flow system, the liquid-solid friction can be measured 

by a rheometer [39–41]. Here, the friction of flocking sample with liquid 
was explored by a plate-plate rheometer (Thermo Scientific Haake Mars 
III rheometer, Germany) at room temperature. Fig. S3 presents the 
schematic diagram of this test. Glycerol-water mixture (50 wt%) served 
as the testing liquid to reduce experimental error [40]. The plate was 35 
mm in diameter. The lower plate was fixed and the upper plate can 
rotate at certain shear rate. The distance between two plates was kept at 
1 mm. As the current shear rate from 40 to 120 s− 1, the Reynolds 
number, Re, was calculated to be from 156 to 470, which was <2000, 
verifying the laminar flow of the system (Re =

ρR2ω
η , where ρ and η are 

the density and dynamic viscosity of liquid, R is the plate radius, ω is 
linear velocity). At first test, the steel lower plate (i.e. the flat surface 
without application of any coatings) was used for measurement, and the 
torque generated by the testing liquid at various shear rate, Mflat, was 
recorded as control; then the lower plate was covered with the flocking 
sample, the torque generated at the same shear rate range was measured 
again, written as Mflock. The “drag-reduction level”, DR, can be defined 
according to the equation [12,40,42–44]: 

DR =
Mflat − Mflock

Mflat
(1)  

3. Results and discussion 

3.1. Surface properties 

Fig. 2 (Top) shows the general fabrication process of the samples. An 
aluminum foil is coated with the uncured epoxy adhesive, electroflocked 
with short nylon fibers under high electric voltage (Fig. S1), and sub-
sequently cured at high temperature. After thermal cure, the flocking 
samples are surface-modified with PDMS (Flock@PDMS) or PDMS 
containing hydrophobic nano-SiO2 (Flock@PDMS-SiO2). And the 
resulting samples are obtained. 

The SEM micrographs in Fig. 2 (Middle) show the typical morphol-
ogies of the flocking samples. The flocking samples have relatively good 
orientation, normal to substrate, forming hairy microstructures (Fig. 2a 
and b). Mimicking the creatures which is able to secrete low-surface- 
energy wax or lipids to their surfaces, we applied PDMS or PDMS-SiO2 
to modify the samples in order to offer the samples superhydrophobicity. 

Compared with the un-modified flocking surface (Fig. 2c and d), a thin 
and smooth layer of PDMS can be recognized on the fibers (Fig. 2e and 
f). In the case of sample modified by PDMS-SiO2, nanoparticle layers can 
be found (Fig. 2g and h). 

The FTIR spectra of the flocking surfaces are shown in Fig. 2i. 
Compared with the unmodified flocking surface, the characteristic peaks 
of Si-CH3 at 1266 cm− 1 and Si–O–Si at 1025 cm− 1 appear on the 
flocking surfaces modified by PDMS or PDMS-SiO2, which correspond to 
the PDMS and/or SiO2 nanoparticles. Similarly, characteristic peaks of 
silicon (Si 1s, Si 1p) can be detected from XPS spectra of the modified 
samples, shown in Fig. 2j. The results of SEM, FTIR and XPS prove that 
the flocking samples were successfully modified. 

The wettability of the samples having different flocking length and 
surface modification are evaluated by contact angle measurement sys-
tem and the results are shown in Fig. 3a, b. Before surface modification, 
the flocking surface is superhydrophilic, water droplets dripping on the 
surface are absorbed into flocking gaps in seconds due to the hydro-
philicity and capillarity of flocks. After surface modification by PDMS 
(Fig. 3a), the sample becomes unwettable with CA of 148◦ to163◦ and 
RA of 12◦ to 0◦. It is clear that the rough surface and low surface energy 
can change the wettability of the flocking surfaces dramatically. The 
flocking length is found to determine the hydrophobic level. At shorter 
flocking length (≤1 mm), the flock surfaces are superhydrophobic (i.e., 
CA ≥ 150◦ and RA ≤ 10◦), whereas, with longer flocking length (1.5 and 
3 mm), the superhydrophobic properties lose slightly. The samples 
modified by PDMS-SiO2 show similar tendency in terms of CA and RA 
(Fig. 3b) and have better superhydrophobicity than those modified by 
PDMS only. This should be ascribed to the hierarchical micro/nano 
structures of these samples (Fig. 2g and f). The alternation of CA and RA 
with flocking length can be explained below. Due to the electroflocked 
technique, the surfaces with longer flocks are always sparse than those 
with shorter flocks. Table 1 compares the flocking density of the 
different samples when the samples were saturatedly flocked. The 
flocking density decreases from 967 to 116 fiber/mm2 as the flocking 
length increases from 0.3 to 3.0 mm. The longer flocks are assumed to 
have smaller bending stiffness and can be easier bent under the gravity 
of water droplets, which may, on one hand, increase the contact surface 
between flock and droplet, and on the other hand, seizing the water 
droplets between flocking gap, and consequently limit the rotation of 
droplets. Fig. 3c and d show the optical photographs of water droplets on 
sample surfaces. The bending of longer flock under the water droplet can 
be observed and indicated by a red arrow. The related schematic dia-
grams are also illustrated. 
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Fig. 3. Wettability of flocking samples with different 
flocking length. Contact angle (CA) and rolling angle 
(RA) of the samples modified by (a) PDMS and (b) 
PDMS-SiO2. (c, d) Optical photographs showing the 
water droplets on the PDMS modified samples with 
flocking length of 0.3 mm and 3.0 mm, respectively. 
The bending of a flock is indicated by the red arrow 
in panel d, the related schematic diagrams are shown 
on the right side. (For interpretation of the references 
to colour in this figure legend, the reader is referred 
to the web version of this article.)   
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3.2. Wear resistance 

Poor wear resistance is one of the main issues that limit the real 
applications of the superhydrophobic surfaces [38,45,46]. Fig. 4 pre-
sents the wear resistance of the modified flocking samples tested by 
sandpaper abrasion method. For all flocking samples, their contact an-
gles change little and the rolling angles increase slightly with increased 
abrasion cycle (Fig. 4a and b). The Flock@PDMS-SiO2 samples seems 
better than Flock@PDMS sample, when subject to the same level abra-
sion. The Flock@PDMS-SiO2 samples can withstand >500 cycles of 
sandpaper abrasion at the apparent pressure of ~1.6 kPa, reaching the 
higher level among the superhydrophobic surfaces tested at similar 
conditions [45,47–52]. 

Fig. 4c and d present the SEM worn surfaces of samples after 200 
cycles of sandpaper abrasion. Both the top and side of flocks are 
observed to be worn, as highlighted by the red dashed lines, but the 
worn level is not serious. The good wear resistance of the flocking 
samples could be attributed to the high strength and resilience of the 
micro nylon fiber itself, which can protect the flocking’s hydrophobic 
layer and nanostructures effectively. Unlike some rigid 

superhydrophobic surfaces [38,53–56], the resilient nylon fibers can 
swing, bend and orient along abrasion direction (self-adaptive) to avoid 
“hard to hard” abrasion. Once unloading, the fibers can return to their 
original state quickly. This feature is illustrated in Fig. 4e. We roughly 
compare the superhydrophobicity failure cycles of various super-
hydrophobic materials, which were tested at similar sandpaper abrasion 
conditions; our flocking sample is the most wear-resistant. 

3.3. The stability of air layer 

The superhydrophobic surfaces have been reported to have excellent 
drag-reduction properties under water owing to their unique nano- and 
micro-structures, which can retain a large amount of air, which can 
reduce the liquid-solid contact area and thus decreasing the friction 
between water and the surface effectively. However, sustaining the 
stability of the air layer under water is still a big issue [21]. The air layer 
of a common superhydrophobic surface (composed of nano- and micro- 
sized particles) is very vulnerable to the working conditions, such as the 
water flow, water pressure, and water impact or intensive vibration 
[21,36,60]. Under such conditions, the air layer is easily destroyed, the 
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Fig. 4. Wear resistance of the flocking samples. (a, b) The contact angle and rolling angle of Flock@PDMS or Flock@PDMS-SiO2 samples as functions of abrasion 
cycle; the samples were subject to 240 mesh sandpaper abrasion under an apparent pressure of 1.6 kPa. (c, d) SEM images of worn surfaces of Flock@PDMS and 
Flock@PDMS-SiO2 samples after 200 cycle sandpaper abrasion. (e) Schematic illustration of the self-adaptive deformation of flocks on wearing. (f) Comparison of 
superhydrophobicity failure cycle of various superhydrophobic materials, which were tested at similar conditions [48,54,57–59]. 
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nano- and micro-structures are wetted by water completely, and sub-
sequently the drag-reduction effect is lost. The stability of the air layer 
could be evaluated by hydrostatic pressure resistance and water impact 
resistance tests in laboratory [22,36,60–63]. 

Here, flocking samples with fiber length of 0.6 mm are selected to 
investigate their hydrostatic pressure resistance. The unmodified 
flocking sample is also tested for comparison. Fig. 5a-c shows the results 
of the samples immersed in water. The experimental photos are shown 
in Fig. 5b and the area of air layer on samples at different compressed air 
pressures is estimated by Image J (Section 2.3.4). As shown in Fig. 5a 
and b, the silvery air layers can be observed on all samples at the very 
beginning of water immersion. With increase in compressed air pres-
sure, the area of air layer decreases obviously because the enhanced 
pressure makes water infiltrate into the space between flocks easily. The 
critical air pressures at which the air layer almost completely disappears 
are 0.15, 0.6 and 2 bar, corresponding to the un-modified flock, 
Flock@PDMS and Flock@PDMS-SiO2 samples, respectively. 

Interestingly, for Flock@PDMS-SiO2, its air layer can be restored 
once the air pressure releases. This could be ascribed to the fact that the 
Flock@PDMS-SiO2 sample has hierarchical nano-micro structures, 
which offer higher critical capillary pressure [64–67]. The critical 
capillary pressure of the nanostructure is much greater than the micro- 
pillar flocks. Under higher air pressure, the air layer may be compressed 
and trapped in nano-structures rather than replaced by water (Fig. S4), 

therefore, the silver reflector disappears. However, the sample still 
maintains non-wetted state, once the pressure is released, the air layer 
can restore. 

Fig. 5c presents the stability of air layer of the samples with im-
mersion time under water at 1 atmospheric pressure. Clearly, the 
Flock@PDMS-SiO2 sample exhibits much better air layer stability than 
others, it can keep the air layer for as long as one month, whereas air 
layers disappear in a few days and within tens of minutes for 
Flock@PDMS and unmodified sample, respectively. The Flock@PDMS- 
SiO2 sample remains superhydrophobicity with CA of 162 ± 3◦ and RA 
of 0–3◦, as the sample was taken out of water. 

Fig. 5d-f presents the droplet impact resistance of the super-
hydrophobic flocking samples. At the Weber number of ~6.3, for the 
sample Flock@PDMS, the water droplet is observed to break into several 
small parts, and some parts are stuck on the sample surface, as indicated 
by a red arrow in Fig. 5d. Comparatively, no impalement was observed 
in the case of sample Flock@PDMS-SiO2 (Fig. 5e) at the same Weber 
number of 6.3. The latter sample can withstand the droplet impact at 
higher Weber number of 62.3. At such a condition, all broken parts are 
observed to rebound from sample surface without obvious sticking 
(Fig. 5f). 
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3.4. Drag-reduction level 

The drag-reduction level (DR) of flocking samples is estimated by a 
plate rheometer as mention in Section 2.3.6. Fig. 6a presents the torques 
tested in shear rate of 40–120 s− 1 are almost linearly correlated with 
increasing the shear rate for all samples. The torques for the surface- 
modified flocking surfaces are obviously lower than that of flat steel 
plate. Therefore, the DR is calculated according to Eq. (1) and shown in 
Fig. 6b. DR does not decay in the testing shear rate. The DR value is 21 % 
and 28 % for the Flock@PDMS and Flock@PDMS-SiO2, exhibiting good 
drag-reduction property. 

4. Conclusion 

Inspired by creature, we fabricated hairy surfaces using electrostatic 
flocking technique and subsequent surface modification. These samples, 
owing to their unique micro- and nano-structures, had the excellent 
superhydrophobic properties with water contact angle of 163◦ and 
rolling angle of ~0◦. Owing to self-adaptive deformation of flocks, the 
samples withstood >500 cycles of sandpaper abrasion at the apparent 
pressure of ~1.6 kPa without significant loss of their superhydrophobic 
performance. They can retain their air layers under water when pres-
sured to 2 bar using compressed air or keep the air layers for as long as 
one month at normal atmosphere. Also, the samples withstood the water 
drop impact with Weber number of ~62.3. The samples did show 
effective drag-reduction with the maximum drag-reduction efficiency of 
28 %. This hairy superhydrophobic surfaces seem very promising for 
drag-reduction applications. 
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