研究方向
RESEARCH DIRECTION

当前位置:首页 > 研究方向 > 纳米力学

纳米力学

NANO MECHANICS
研究方向

当材料的特征尺寸控制在纳米尺度,将引入尺寸效应、表界面效应等,催生一系列新奇的物理化学特性。此外,由于纳米尺度下材料的表面原子比例接近100%,原本一些微弱的范德华力、氢键等非共价键作用变得不可忽略,甚至主导着纳米材料和结构的变形和组装行为。从应用角度看,电子器件呈现微型化发展趋势,作为重要组成部分的纳米材料在实际应用中承受着复杂多模态的载荷作用,其失效问题决定着器件的鲁棒性和可靠性。因此,如何解析纳米材料的力学特性是微纳米力学领域的研究重点之一。另一方面,先进材料的设计与制造往往包含跨尺度力学问题,如何理解纳米结构和界面的力学特性,并通过多级次构筑将其传递到宏观尺度,进而建立纳米基元与宏观体系的结构-性能关系,是材料领域最关注的科学问题。针对上述问题,我们围绕着纳米材料和结构的力学特性展开微纳米力学研究,具体研究方向包括:

1.发展动/静态微纳尺度力学表征技术和测量方法,包括准静态下的微纳鼓泡技术、拉曼光谱力学测试技术、原位电镜MEMS微拉伸测试技术、纳米压痕技术、摩擦力显微术等,以及动态下的激光诱导纳米颗粒冲击测试和AFM纳米疲劳测试技术。

2.精确测量低维纳米材料的力学性质,获取描述材料变形与失效的关键力学参数(诸如杨氏模量、弯曲刚度、断裂强度、断裂韧性等),研究对象包括以石墨烯、功能有机纳米薄膜为代表的二维材料和以碳纳米管、无机亚纳米线为代表的一维材料。

3.精细表征纳米结构材料(包括纳米复合材料、纳米材料宏观聚集体、多晶/多相材料、纳米点阵材料等)在不同载荷模式下的复杂力学响应,揭示微观结构和界面对于材料整体力学行为的作用机制,建立材料和结构性能的跨尺度传递规律,指导先进功能材料的多级次结构设计。


代表性研究成果

1.C. Wang, X. Cui, S. Wang, W. Dong, H. Hu, X. Cai, C. Jiang, Z. Zhang, L. Liu. Anisotropic mechanical properties of α-MoO3 nanosheets. Nanoscale 2024, 16, 4140-4147  PDF 文件

2.X. Cui, L. Liu, W. Dong, Y. Zhou, Z. Zhang. Mechanics of 2D material bubbles. Nano Res. 2023, 16, 13434-13449.  PDF 文件

3.G. Wang, H. Hou, Y. Yan, R. Jagatramka, A. Shirsalimian, Y. Wang, B. Li, M. Daly, C. Cao. Recent advances in the mechanics of 2D materials. Int. J. Extreme Manuf. 2023, 5, 032002  PDF 文件

4.X. Cui, W. Dong, S. Feng, G. Wang, C. Wang, Z. Xu, L. Liu, Z. Zhang. Extra-High Mechanical and Phononic Anisotropy in Black Phosphorus Blisters. Small 2023, 19, 2301959  PDF 文件

5.G. Wang, F. Najafi, K. Ho, M. Hamidinejad, T. Cui, G. Walker, C.V. Singh, T. Filleter. Mechanical size effect of freestanding nanoconfined polymer films. Macromolecules 2022, 55, 1248–1259  PDF 文件

6.Y. Hou, S. Zhang, Q. Li, L. Liu, X. Wu, Z. Zhang. Evaluation local strain of twisted bilayer graphene via moiré pattern. Opt. Lasers Eng. 2022, 152, 106946.  PDF 文件

7.Y. Cui, G. Wang, W. Wang, X. Cui, W. Dong, C. Wang, M. Jin, T. He, Z. Zhang, L. Liu. Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites. Compos. Sci. Technol. 225, 109483.  PDF 文件

8.W. Wang, X. Ma, Z. Dai, S. Zhang, Y. Hou, G. Wang, Q. Li, Z. Zhang, Y. Wei, L. Liu. Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Adv. Mater. Interfaces 2022, 9, 2101939.  PDF 文件

9.T. Qureshi#, G. Wang#, S. Mukherjee, M. A. Islam, T. Filleter, C. V. Singh, D. K. Panesar. Graphene-based anti-corrosive coating on steel for infrastructural applications: Challenges and Potential. Constr. Build. Mater., 2022, 351, 128947.  PDF 文件

10.Y. Hou, Z. Dai, S. Zhang, S. Feng, G. Wang, Z. Xu, L. Liu, Q. Li, Z. Zhang. Elastocapillary cleaning of twisted bilayer graphene interfaces. Nat. Commun. 2021, 12, 1-9.  PDF 文件

11.G. Wang, Z. Zhang, Y. Wang, E. Gao, X. Jia, Z. Dai, C. Weng, L. Liu, Y. Zhang and Z. Zhang. Out-of-Plane Deformations Determined Mechanics of Vanadium Disulfide (VS2) Sheets. ACS Appl. Mater. Interfaces, 2021, 13, 3040-3050.  PDF 文件

12.G. Wang, L. Liu, Zhang, Z. Interface Mechanics in Carbon Nanomaterials-based Nanocomposites. Compos. Part A, 2021, 141, 106212.  PDF 文件

13.T. Arif#, G. Wang#, G. Colas, R.N.S. Sodhi, T. Filleter, Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces. Tribol. Int., 2021, 163, 107194.  PDF 文件

14.G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng, L. Liu, Z. Xu, R. Huang, Z. Zhang. Bending of Multilayer van der Waals Materials. Phys. Rev. Lett. 2019, 123(11), 116101. (Editors’ suggestion, Cover feature)  PDF 文件

15.Z. Dai#, G. Wang#, Z. Zheng, Y. Wang, S. Zhang, X. Qi, P. Tan, L. Liu, Z. Xu, Q. Li, Z. Cheng, Z. Zhang. Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.  PDF 文件

16.汪国睿,刘璐琪,张忠.二维材料实验力学综述[J].实验力学;2017年05期  PDF 文件

17.G. Wang, Z. Dai, Y. Wang, P. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, Z. Zhang. Measuring Interlayer Shear Stress in Bilayer Graphene. Phys. Rev. Lett., 2017, 119, 036101. (Editors’ suggestion)  PDF 文件

18.G. Wang, E. Gao, Z. Dai, L. Liu, Z. Xu, Z. Zhang. Degradation and Recovery of Graphene/Polymer Interfaces under Cyclic Mechanical Loading. Compos. Sci. Technol., 2017, 149, 220.  PDF 文件

19.G. Wang, Li, Y. Wang, Z. Zheng, L. Liu, Z. Dai, X. Qi, Z. Cheng, Z. Xu, P. Tan, Z. Zhang. Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. J. Phys. Chem. C, 2017, 121, 26034  PDF 文件

20.G. Wang, L. Liu, Z. Dai, H. Hu, Q. Dai and Z. Zhang. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8, 22554.  PDF 文件

21.G. Wang, L. Liu, Z. Dai, Q. Liu, H. Miao and Z. Zhang. Biaxial Compressive Behavior of Embedded Monolayer Graphene inside Flexible Poly (methyl methacrylate) Matrix. Carbon, 2015, 86, 69.  PDF 文件

22.Y. Gao, L. Liu, S. Zu, K. Peng, D. Zhou, B. Han, Z. Zhang. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano 2011, 5, 2134-2141.  PDF 文件

23.Y. Gao, J. Li, L. Liu, W. Ma, W. Zhou, S. Xie, Z. Zhang. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv. Funct. Mater. 2010, 20, 3797-3803  PDF 文件

24.W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu, J. Li, H. Dong, W. Zhou, P. M. Ajayan, S. Xie. High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 2009, 9, 2855-2861.  PDF 文件

25.W. Ma, L. Liu, T. Zhang, Z. Zhang, L. Song, Y. Ren, J. Shen, Z. Niu, S. Xie. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 2009, 21, 603-608.  PDF 文件